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Abstract—In order to solve the deficiencies of speed tracking 

control for DC motor system with multiple transmission 

channels and external disturbances in recent remote-control 

systems, a second-order super twisting sliding mode control 

(SSTSMC) method is proposed. Firstly, the model of DC motor 

with multiple channels and external disturbances is considered. 

Then, an observer in the form of super twisting algorithm (STA) 

is presented to estimate the states of system. Furthermore, a 

SSTSMC algorithm based on the super twisting observer (STO) 

is designed to track the speed of the DC motor. In which, a 

nonlinear term is constructed so as to restrain the external 

disturbances and jitters while switching among the channels. 

Also, the proposed method is testified to be stable. Finally, both 

simulations and practical experiments are conducted to 

demonstrate the availability of the methodology. 

 
Index Terms—Speed tracking of DC motor, multiple channels, 

external disturbances, STO, and SSTSMC. 

I. INTRODUCTION 

C motor has been diffusely applied in satellite，aerospace,  

robot control and other fields due to its good speed 

regulation performance and dynamic characteristics [1]. With 

the rapid development of military, medical and industrial 

control fields, in recent years, the accuracy and response speed 

of DC motor speed control requirements are increasingly 

higher, which has widely aroused the scholars' keen attention. 

Furthermore, in modern industrial control systems, the 

parameters of the controlled objects are usually gathered by 

multiply sensors and transferred through different channels [2]. 

The switch of sensors and channels will inevitably introduce 

abrupt parameter variation so that markov jump theory can be 

used effectively in such systems. In [3], a hidden Markov 

model is proposed in order to deal with the possible 

asynchronous asymmetry between the system mode and the 

controller mode, and cause the closed-loop system to follow a 

hidden Markov motion. In [4], a robust controller for a 

networked control system of multiple communication channels 
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is developed, in which the Markov channel switching algorithm  

is applied. In [5], an equivalent control method for MIMO 

uncertain linear Markov jump systems based on sliding mode 

control is designed to make sure that the system is stochastic 

asymptotic stable. Hence, introducing Markov jump to deal 

with the problem of switching among multiple channels is 

theoretical probable. 

As for the problem of control system, various advanced 

control algorithms have been proposed. For example, PID 

control [6], h-infinity control [7-8], fuzzy control [9-10], model 

predictive control [11-12], event-triggered control [13-14], 

sliding mode control (SMC) [15-16], etc. In which, SMC has 

the advantages of simple algorithm, strong robustness and fast 

response, which can overcome the uncertainty of the system 

and be suitable for nonlinear systems. Some scholars have 

applied the SMC method to space robot control. SMC is a 

significant methodology for nonlinear control, as a result of 

which, it has been diffusely researched recently. However, the 

shortcomings of SMC are also obvious. When the motion 

trajectory of the SMC moves close to the sliding surface, it 

usually moves back and forth within the sliding mode 

bandwidth, instea1d of directly moving to the equilibrium point, 

which is also the main problem in practical applications. 

In order to damp out the jitters, there have been many 

researches so far, including high-order SMC, adaptive SMC, 

etc. In [16], Xu proposes a SMC strategy based on terminal 

sliding mode surface, which designs a new second-order 

discrete-time SMC strategy for precision motion control of 

piezoelectrically driven Nano-positioning devices. This 

strategy is easy to realize and eliminate the use of state observer 

by using the feedback of output value. In [17], an integral 

suboptimal second-order SMC algorithm is proposed. The 

algorithm adjusts the controller, which different from 

conventional SMC, is continuous control output to the system 

so that it can be better applied into industrial robot operation. 

This algorithm has positive damping effect and is proved to be 

able to use in industry. In [18], in order to control the wind 

energy conversion system between generator and grid sides, 

Merabet et al. design a SMC method. The method is based on 

external disturbance model and is of great robustness. 

Experiments in which show that the proposed method is robust 

to the uncertain disturbances, changing parameters and system 

uncertainness. 

The above-mentioned method is effective to control the 

corresponding systems. However, the chattering is still not 

greatly damped and the methods cannot be fast transplanted 

into other aspects. Hence, some scholars propose to introduce a 

nonlinear term into the control strategy, where STA is a popular 
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methodology. This term can effectively and quickly damp out 

the jitters nearby the sliding surface so that the system can be 

stable quicker than conventional SMC. For example, in [19], in 

order to track the motion of a piezoelectric-driven 

Nano-positioning system, a continuous third-order integral 

terminal sliding mode control (3-ITSMC) strategy based on 

STA is proposed. This strategy eliminates the jitters and 

produces a higher sliding mode precision. In this paper, the 

proposed 3-ITSMC performs better than traditional 

second-order and third-order SMC strategy in robust tracking, 

external disturbances restraint and other problems caused by 

uncertain parameters. In [20], since SMC has been widely 

applied to design controllers or observers in control system, 

Moreno et al. give a theory to construct strict Lyapunov 

functions, which ascertains that the proposed sliding surface is 

accessible and the system will become stable in finite steps. 

And it is proved by strict Lyapunov functions that the general 

system with the form of STA is stable. The proposed control 

strategies based on STA have greatly reduced the chartering 

problems caused by conventional SMC.  

However, the controller methods based on STA have not 

been widely researched and applied. For example, few papers 

describe the problems of speed tracking control for DC motor 

systems with uncertain parameters and external disturbances 

based on STA. Though higher-order SMC can already 

effectively reduce the chattering, its structure is complicated 

and hard to realize or applied into industry. Hence, it’s of great 

importance to study this kind of methodologies especially 

SSTSMC strategy.  

Through the analysis of the above papers, the model of DC 

motor system with switching channels and external 

disturbances is constructed in this paper. The switching of 

channels obeys Markov jump. Then, a STO is presented to 

eliminate the errors of system states which are induced by 

switching channels and external disturbances. Based on the 

STO, a SSTSMC algorithm is designed to track the speed of 

DC motor. A nonlinear term with the form of STA is introduced 

in the algorithm to better reduce the jitters generated from 

switching channels. Finally, the proposed control method is 

carried out through numerical simulations and practical 

experiments. The results illustrate the effectiveness. 

This paper mainly consists of the following parts. In Section 

II, the problems of speed tracking control of DC motor system 

are formulated. The system with multiple channels and external 

disturbances is considered. The switching of the channels obeys 

Markov jump. Section III proposes a second order super 

twisting controller based on STO. Section IV includes the 

numerical simulations and practical experiments, which are 

conducted to depict the availability of the proposed 

methodology of this paper. The last part, section V summarizes 

the conclusions of this paper. 

II. PROBLEM FORMULATION 

The state-space model of DC motor system is introduced in 

this part, and the switching problem of multiple transmission 

channels that may occur in the networked control scenario is 

considered. Also, external disturbances are considered at the 

same time. 

A. System Description and Modelling 

The composition of the DC motor with switching channels 

and external disturbances is shown in Fig. 1. The system is 

made up of a controller and a DC motor plant. The controller 

calculates the suitable control value based on the measured 

signal, which is digital value. This value transmits through 

transmission channels to the DC motor after the conversion 

from digital to analogy. During which, there are multiple 

transmission channels. Each channel has different channel 

characteristics and transmission errors. In order to handle this 

problem, assume that the selection of channels is a stochastic 

process, in which jitters will be inevitably introduced.  

Consider the two-dimensional system as follow [22]: 

( 1) ( ) ( ) ( )x k Ax k Bu k w k+ = + +                    (1) 

( ) ( ) ( )i ik y k C x k = =                             (2) 

where 1 2( ) [ ( ) ( )]T nx k = x k   x k R , ( ) mu k R , and ( ) q

iy k R  

are the system states, control input, and output value severally. 

Meanwhile,  1 2( ) ( )  ( )
T ww k w k w k R=   represents the 

external disturbances. A , B is the system parameter dependent 

matrix with appropriate dimensions. iC  is the constant matric 

with appropriate dimensions of channel i . The differences 

between 1 2, , nC C C…  are set to simulate the different 

quantifying errors and measuring noises between channels. 

Controller

Channel 1

Channel 2

Channel n

DC motor plant

1( )y k

2 ( )y k

( )ny k

( )u k

1 2( ) { ( ), ( ),..., ( )}nk y k y k y k 

D/A DC motor A/D

( )w k

Markov jump

 

Fig. 1. DC motor system with Multi-channels and external disturbances. 

According to the stochastic communication protocol (SCP) 

covered in [21], during the process of a single data transmission, 

only one channel 1 2( ) { ( ), ( ),..., ( )}nk y k y k y k  , that is, the 

data of one channel, can be selected to transmit data. 

Assumption 1: The selection of ( )k  is a stochastic process 

which obeys markov jump [21]. 

Based on Assumption 1, under the condition of ( )k i = , the 

probability of ( 1)k j + =  occurrence is expressed by the 

following relationship: 

Pr ob{ ( 1) | ( ) } ( )ijk j k i k  + = = =                (3) 

where ( ) 0,( , {1,2,..., })ij k i j n    denotes the conditional 

transition probability from ( )k i =  of k  time to ( 1)k j + =  

of 1k +  time. Also, it satisfies 

1
( ) 1,( {1,2,..., })

n

ijj
k i n

=
=                        (4) 
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B. External Disturbance Estimation 

The term of external disturbance ( )w k in (1) can be estimated 

as follow: 

ˆ ( ) ( 1) ( ) ( 1) ( 1)w k w k x k Ax k Bu k= − = − − − −        (5)                           

Thus, combining (5) with the state-space equation of (1), 
following results can be obtained: 

ˆ( 1) ( ) ( ) ( ) ( )x k Ax k Bu k w k w k+ = + + −               (6) 

where ˆ( ) ( ) ( )w k w k w k= −  is the disturbance estimation error. 

Hence, according to (5), ( )w k  can be formulated as follow: 

( ) ( 1) ( )

[ ( ) ( 1)] [ ( ) ( 1)] [ ( 1) ( )]

w k w k w k

       A x k x k B u k u k x k x k

= − −

= − − + − − − + −
(7) 

Define ( ) ( 1)x k x k− −  as ( )x k , ( ) ( 1)u k u k− −  as ( )u k , 

so that (7) can be written as 

( ) ( ) ( ) ( 1)w k A x k B u k x k= + − +                     (8) 

Remark 1: Supposing that ( )x k  and ( )u k  are both bounded, 

it’s mathematically obvious that the ( )w k  is bounded as well.   

III. SECOND-ORDER SUPER TWISTING SLIDING MODE 

CONTROL BASED ON SUPER TWISTING OBSERVER 

In this part, a STO is presented to estimate the system states 
and errors induced by external disturbances and channel switch. 
Base on this, a SSTSMC strategy is designed to better track the 
speed of the DC motor system. 

A. Design of Observer 

In the state-space model of (1)(2), only the output value 

( )k  is available. While it is essential to obtain the state values 

when design controller. Thus, define the errors of system states 
as follows: 

1 1 1
ˆ( ) ( ) ( )e k x k x k= −                            (9) 

2 2 2
ˆ( ) ( ) ( )e k x k x k= −                         (10) 

where  1 2
ˆ ˆ ˆ( ) ( ) ( )=

T
x k x k   x k . Let 

11 12

21 22

a  a
A

a  a

 
=  

 
, 

1

2

b
B

b

 
=  

 
,  

equation (1) can be represented as 

1 11 12 1 1 1

2 21 22 2 2 2

( 1)  ( ) ( )
( )

( 1)  ( ) ( )

x k a a x k b w k
u k

x k a a x k b w k

+         
= + +         

+         
  (11) 

which equals as follow: 

1 11 1 12 2 1 1( 1) ( ) ( ) ( ) ( )x k a x k a x k b u k w k+ = + + +         (12) 

2 21 1 22 2 2 2( 1) ( ) ( ) ( ) ( )x k a x k a x k b u k w k+ = + + +        (13) 

Then the STO can be designed as 

1 11 1 12 2 1 1
ˆ ˆ ˆ( 1) ( ) ( ) ( )x k a x k a x k b u k z+ = + + +            (14) 

2 21 1 22 2 2 2
ˆ ˆ ˆ( 1) ( ) ( ) ( )x k a x k a x k b u k z+ = + + +          (15) 

ˆ ˆ( ) ( )i iy k C x k=                                      (16) 

where
1

2
1 1 1 1 2 1( ) ( ( )) ( )z k e k sign e k k e k= + and 2 3 1( ( ))z k sign e k=  

4 1( )k e k+  are the correction terms.  

Furthermore, according to (9) (10) and (14) (15), the error of 
system states can be written as 

1 11 1 12 2 1 1( 1) ( ) ( ) ( )e k a e k a e k z w k+ = + + −        (17) 

2 21 1 22 2 2 2( 1) ( ) ( ) ( )e k a e k a e k z w k+ = + + −       (18) 

where ( )w k is bounded, 1k , 2k , 3k  and 4k are gains that need to 

adjust.  

Eventually, both 1( 1)e k +  and 2 ( 1)e k +  will trend to zero, 

under which condition the estimation states can be seen as the 

actual ones. That is ˆ( ) ( )x k x k= . 

According to equation (17) and (18), the error equation can 

be formulated as follow: 

1( 1) ( ) ( ) ( ( ))e k Ge k H k sign e k+ = +               (19) 

where 
11 2 12

21 4 22

   

   

a k a
G

a k a

+ 
=  

+ 
,

1

2
1 1

3

( )
( )

      

k e k
H k

k

 
 =
 
 

.  

In order to further analyze the stability and effectiveness of 
the mentioned method, a lemma as follow is given. 
Lemma 1[23]: Introduce a lambda inequality as follow: 

1T T T TM N N M M M N N−+   +                (20) 

Theorem 1: For given appropriate gains 1k , 2k , 3k  and 4k , if 

there are  positive definite matrices 0TX X=  , 0TQ Q= 

and 0T=   such that the following LMI holds: 

( ) (1 )TG X X X G X Q+  − −  −               (21) 

Then the proposed observer can be proved to be stable, and 
the trajectories of observation error will converge into a ball 

formulated as 
2

:r dY e e R=  , the center of which is at origin 

of the coordinates. 
1

d

d
R =

−
represents the radius of the ball.  

where  0 1   ,
2

2 1

2 1

1

4
d m m Q−= + , 

2

1 1 1 3 12 1( )m m k k f n= + , 

2 2 1

2 3 22 1 3 12 1( )m k f k k f n−= + ,
2

1 1 11m k f= , 1n + , 

11 12

21 22

  

  

f f
F

f f

 
=  

 

1 X− =  +  ,
2 2, ,F X   . 

Proof:  Introduce the Lyapunov function as follow: 

( ) ( ) ( )TV k e k Xe k=                                (22) 

So that              

( 1) ( 1) ( )

         ( 1) ( 1) ( ) ( )T T

V k V k V k

e k Xe k e k Xe k

+ = + −

= + + −
   (23) 

According to (19), (23) can be furtherly written as  

1

1

1

( 1) ( )[ ] ( ) ( ( )) ( ) ( )

            ( ) ( ) ( ) ( ) ( ( ))

         ( )[ ] ( ) ( ) ( )

            2 ( ) ( ) ( ( ))

T T T

T T T

T T T

T T

V k e k G XG X e k sign e k H k XGe k

H k XH k e k G XH k sign e k

e k G XG X e k H k XH k

e k G XH k sign e k

+ = − +

+ +

= − +

+

(24)

 

Combining with lemma1, the term in (24) can be represented 
by inequation as follow: 

 1

1

2 ( ) ( ) ( ( ))

( ) ( ) ( ) ( )

T T

T T T

e k G XH k sign e k

e k G X XGe k H k H k−  + 
     (25) 

Hence, (24) can be written as 

1

( 1) ( )[ ( ) (1 ) ] ( )

                 ( )[ ] ( ) ( )

T T

T

V k e k G X X X G X e k

H k X H k V k−

+  +  − −

+  + −
  (26) 

Thus        1( )[ ] ( ) ( ) ( )T TH k X H k H k FH k− + =                     

 

1 1

2 211 12
1 1 1 1

21 22
3 3

1

2
1 1 2 1 3

  ( ) ( )

              

( ) ( )

T

f fk e k k e k

f fk k

m e k m e k m

    
   =  
       

= + +

            (27) 
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where 
2

1 1 11m k f= , 2 1 3 12m k k f= ,
2

2 3 22m k f= . 

According to lemma1, the term in equation (27) can be 

further represented if there exists 0TQ Q=  which satisfies 

the equation as follow: 

( ) (1 ) 0+  − − + =TG X X X G X Q            (28) 

Then ( )V k can be written as  

2

1 1 2( 1) ( ) ( ) ( )
Q

V k e k m e k V k m+  − + − +     (29) 

where 
2

1 1 1 3 12 1( )m m k k f n= + ,
2 2 1

2 3 22 1 3 12 1( )m k f k k f n−= + . 

Moreover, (29) can be further derived as follow: 
2 1

1 1 2( 1) ( ) ( ) ( )
Q

V k e k m QQ e k V k m−+  − + − +  (30) 

1 1

1 12 2
1 1

2
2 1

1 2

1 1
( 1) ( ) ( )

2 2

1
                 ( )                            

4

− −

−

   
+  − −  −   

      

+ − +

T

V k Q e k m Q Q e k m Q

m Q V k m

                          

(31) 

That is,                 ( 1) ( )V k V k d+  − +                       (32) 

Hence,                 ( 1) (1 ) ( )V k V k d+  − +                     (33) 

By iterating (33), the following conclusion can be obtained: 

1

0

( 1) (1 ) (0) (1 )
k

k j

j

V k V d−

=

+  − + −         (34) 

Inequation (34) indicates that the observation error is 

convergent. Furthermore, after finite steps k , 

lim ( )
1k N

d
V k

→


−
, N  is a finite number. While 

1
d

d
R 

−
, 

which means the trajectories of observation error is converged 

into a ball. This finishes the proof.  

B. Design of SSTSMC 

The error of output defines as follow: 

( ) ( ) ( )rk k y k = −                             (35) 

where ( )k is the actual output speed of the DC motor system, 

while ( )ry k is the reference input speed. The sliding mode 

function of discrete-time is designed as follow: 
2

1

( )

1 2 3

( )

( ) ( ) ( ( )) ( )
t k

t k

s k k sig k


      

=

= + +            (36) 

where 
1

2

( ) max{ 10,0}

( ) max{ 1,0}

t k k

t k k

= −


= −
, 1 0  , 2 0  , 3 0  , 0 1    

are the gain parameters. And ( )sig 
, ( )k  are defined by 

( ) ( )sig sign  
 , ( ) ( ) ( 1)k k k  − − .  

Remark 2: The parameters 1 2( ), ( )t k t k in equation (36) are 

variables, which limit the data length of the sum term in (36) 

and ensure that only the recent ten data will be summed (if 

exists), which can effectively reduce the instability caused by 

residual accumulation. For short, let 1 1 2 2( ), ( )t t k t t k= = . 

Assumption 2: The error value of reference input and actual 

output ( )=0 0i i ， , the control input ( )=0 0u i i ， . 

Thus, ( +1)s k can be formulated as follow: 

2

1

1 2 3( +1) ( 1) ( ( )) ( 1)
t

t

s k k sig k


      

=

= + + + +      (37) 

When sliding mode is in equilibrium, ( +1) 0s k = , which is 

2

1

1 2 3( 1) ( ( )) ( 1) 0
t

t

k sig k


      

=

+ + + + =     (38) 

Further, substitute (35), (36) into (38), it can derivate that 
2

1

2

1

2

1

1 2 3

1 3 2 3

1 3 2 3

( +1) ( 1) ( ( )) ( ( 1) ( ))

( ) ( 1) ( ( )) ( )

( )( ( 1) ( 1)) ( ( )) ( )

t

t

t

t

t

r

t

s k k sig k k

k sig k

k y k sig k







       

       

       



=



=



=

= + + + + −

= + + + −

= + + − + + −







 

2

1

1 3

2 3

ˆ( )( ( ( ) ( )) ( 1))

  ( ( )) ( )

0

i eq r

t

t

C Ax k Bu k y k

sig k


 

    

=

= + + − +

+ −

=



                     (39) 

So, the equivalent control input equation is 
2

1

2 3

1 1

1 3

( ( )) ( )

ˆ( ) [ ( ( 1)) ( )]
( )

t

t

eq i r

sig k

u k B C y k Ax k


    

 



=− −

− +

= + + −
+



                            (40) 

While the whole equivalent control law is selected as the 

following form: 

( ) ( ) ( )eq su k u k u k= +                             (41) 

where ( )su k  is the control input with the form of STA.  

Hence, ( )su k  can be designed as follow: 

1

2
1( ) ( ) ( ( )) ( )su k s k sign s k z k= − +                  (42) 

2( 1) ( ( ))z k sign s k+ = −                         (43) 

where 1 0   and 2 0  are the constant gains which need to 

be designed. 

Remark 3: On the account of ( )su k  has the form of STA, it is 

proved as above that the form is mathematically stable.  

C. Analysis of the System Motion 

Definition 1: If given inequation as follow is satisfied, then the 

sliding motion accessibility is proved. 

( 1) ( )s k s k+                                 (44) 

Theorem 2: If the abovementioned inequation is satisfied, for 

the discrete-time system in (1), the sliding mode function in 

(36), as well as the equivalent control law in (41), the 

trajectories of the system will finally arrive into the sliding 

mode bandwidth within finite steps.  

Proof: Proof process can be separated into two steps: sliding 

motion accessibility and convergence in finite steps. 

( 1) ( 1) ( 1)

ˆ( 1) ( 1)

ˆ( ) ( ) ( 1)

r

i r

i r

k k y k

C x k y k

C Ax k CBu k y k

 + = + − +

= + − +

= + − +

                       (45) 

According to (40) and (41), (45) can be rewritten as 
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2

1

2 3

1 3

( ( )) ( )

( 1) ( )
( )

t

t

i s

sig k

k C Bu k


    


 



=

− +

+ = +
+


   (46) 

Furthermore, 

2

1

2

1

2 3

1 3

2 3

1 3

2 3

1 3

( 1) ( 1) ( )

( ( )) ( )

( )
( )

( ( )) ( 1)

  ( 1)
( )

( ( )) ( )
( )

( )

t

t

i s

t

t

i s

i s

k k k

sig k

C Bu k

sig k

C Bu k

sig k k
C B u k





  

    

 

    

 

   

 



=



=



+ = + −

− +

= +
+

− + −

− − −
+

− +
= +

+




(47) 

Case 1: When ( ) 0s k   

2

1

2

1

1 2 3

1 2 3

1 2 3

1 3 2 3

( 1) ( )

( 1) ( ( )) ( 1)

  ( ) ( ( )) ( )

( 1) ( ( )) ( ( 1) ( ))

( ) ( 1) ( ( )) ( )

t

t

t

t

s k s k

k sig k

k sig k

k sig k k k

k sig k k





      

      

      

      



=



=





+ −

= + + + +

− − −

= + + + + −

= + + + −




 (48) 

Substitute ( 1)k + into (48), it can be written as 

 1 3( 1) ( ) ( ) ( )ss k s k CB u k + − = +                (49) 

1 1

2 2
1 1

1 1

2 2
1 2 2

1 1

2 2
1

( ) ( ) ( 1)

( ) ( ( )) ( ) ( 1) ( ( 1))

  ( 1)

( ) ( 1) ( ( 1)) ( ( 2))

( ) ( 1)                                               

s s su k u k u k

s k sign s k z k s k sign s k

z k

s k s k sign s k sign s k

s k s k

= − −

=  + −  − −

− −

 
=  − − +  − −  − 

 

 
=  − − 

 
     (50)

 

Hence,  
1 1

2 2
1 3 1( 1) ( ) ( ) ( ) ( 1)is k s k C B s k s k 

 
+ − = +  − − 

 
    (51) 

where 1 3 1, , 0    , iC B  is the parameter of the plant,

1 3 1( ) 0iC B +   .  

Thus, if ( ) ( 1) 0s k s k− −  , ( 1) ( ) 0s k s k+ −   can be 

substituted. 

1 2

3

(1) (0) ( (1) (0)) ( (0))

                  ( (1) 2 (0) (-1))

s s sig    

   

− = − +

+ − +

               (52) 

According to assumption 2, (0) ( 1) 0 = − = , so that 

1 3

1 3

1 3

(1) (0) (1) (1)

               ( ) ( (1) (1))

ˆ               ( ) ( ( (0) (0) (1))

r

i r

s s

y

C Ax Bu y

   

  

 

− = +

= +  −

= +  + −

  (53) 

where  1 2
ˆ ˆ ˆ(0) (0)  (0) (0) 0

T
x x x u= = = , 1 3, , (1) 0ry   , so 

that (1) (0) 0s s−  . 

Substitute (1) (0) 0s s−  into (51), so that (2) (1) 0s s−  ,

(3) (2) 0s s−  ,…, ( 1) ( ) 0s k s k+ −   can be proved ordinally. 

Case 2: When ( ) 0s k  , it can be concluded similarly that 

( 1) ( ) 0s k s k+ −  . 

Combining with the above two cases, it has been proved that 

( 1) ( )s k s k+                              (54) 

According to definition 1, this finishes the proof of sliding 

motion accessibility. 

Assume ( ) 0s k  , as proved above (1) (0) 0s s−  , thus 
1 1

2 2(1) (0) (1) (0) 0s s s s−  −  . If define (1) (0) 0s s − =  ,  

1 3 1( ) iC B  +  = , so that  

 

1 1

2 2(2) (1) (1) (0)s s s s 
 

− = −  
 

             (55) 

After iteration it can reach that  
1 1

2 2( 1) ( ) ( ) ( 1) ks k s k s k s k  
 

+ − = − −  
 

     (56) 

 While ( 1) ( ) 0s k s k+ −  , so that 

( 1) ( ) 0k s k s k   + −                       (57) 

Taking step as 0  , after finite steps k , the sliding motion 

will come to equilibrium state, so that convergence time
kT    . While ( ) 0s k  , it can be concluded similarly 

that convergence time 
kT    . This finishes the proof. 

IV. SIMULATIONS AND EXPERIMENTS RESULTS 

A. Numerical simulations 

In this subsection, the numerical simulation based on DC 

motor system is simulated through numerical simulation as 

Fig.2 depicts, which is done to prove the effectiveness of the 

proposed methodology. 

DC motor plantSuper-Twisting Controller

( )w k Channel 1

Channel 2

Channel 3

Markov 

jump

Super-Twisting Observer

Reference speed

+
-

ˆ( )x k( )k

1 2 3( ) { ( ), ( ), ( )}k y k y k y k 

1( )y k

2 ( )y k

3( )y k

 
Fig. 2. DC motor system with Multi-channels and external disturbances. 

The plant can be represented as (1)(2). The parameters of the 

plant are list as follow:
0.9647   -0.0282

0.0196    0.9997
A

 
=  

 
,

0.0196

0.0002
B

 
=  

 
,

0

-0.2293

1.4393

T

C
 

=  
 

, 1

-0.2

 1.4

T

C
 

=  
 

, 2

-0.25

 1.45

T

C
 

=  
 

. External 
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disturbance 1

2

( )
( )

( )

w k
w k

w k

 
=  

 
,

1( ) 3 ( ) sin( )w k rand k k= + ,

2 ( ) ( ) cos(2 )w k rand k k= + ,  ( ) 0,1rand k  . The parameters of 

the STO are set as 
1 2 3 45, 0.6, 1, 0.2k k k k= − = − = = . Also, the 

sliding mode function:
1 2900, 150, = = 3 100, 0.3 =  = . 

The STC is set as 
1 265, 8000 =  = . The transfer matrix of 

markov jump is 

0.3 0.4 0.3

( ) 0.7 0.2 0.1

0.6 0.2 0.2

k

 
 

=
 
  

. Simulation time is set to 

be 30s, and the sampling period is 0.02s, so that there are 1500 

sampling points totally. The initial conditions are as follow: 

 (0) 500 500
T

x = ,  ˆ(0) 0 0
T

x = , (0) 0u = , (0) 0ry  . 

The simulation results are explained as follow.  

Fig.3. External disturbances of the DC motor system. 

Fig.3 depicts the external disturbances added into the DC 

motor system, which are sinusoidal noises in general. There are 

2 system states in total, external disturbance 1, 2 are injected to 

1( )x k  and 
2 ( )x k  respectively. 

Fig.4. Output trajectories of the DC motor system at fixed speed. 

Fig.4 shows the tracking output at the speed of 1500 r/min 

with random switch points (RSP). At about 100th sampling 

point (about 2s), the system starts to become stable. Meanwhile, 

the proposed method is better than conventional second order 

sliding mode control (2-SMC) algorithm in [19]. When channel 

changes, the proposed method performs faster and jitters 

smaller. Also, it has smaller static errors and jitters.  

Fig.5. Trajectories of the control input at fixed speed.  

 

Fig.6. Sliding motion at fixed speed.  

 
Fig.7. Output trajectories of the DC motor system at changed speed. 

Fig.5 describes the trajectories of the control input. It’s 
obvious that the proposed method consumes less energy to 
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reach aimed speed when transmission channel changes. Fig.6 
represents the sliding motion of the two methods at fixed speed 
of 1500 r/min. The sliding motion will gradually come close to 
sliding surface, jittering in the sliding bandwidth. Also, it can 
be illustrated that the proposed SSTSMC jitters smaller and 
becomes stable quicker when channel switches.  

Furthermore, to more profoundly compare these two 
methods, a further simulation at changed speed is carried out.  

Fig.7 shows the output trajectories of the DC motor system 
with speed changing from 1000 r/min to 2000 r/min. At about 
100th sampling point (about 2s), the system of proposed method 
becomes stable, while the compared method keeps jittering 
until 200th sampling point (about 4s) then it starts to be stable.  

Furthermore, when the speed or transmission channel 
changes, the proposed method performs quicker and jitters 
smaller. Meanwhile, it has smaller static jitters when 
stabilization.  

 
Fig.8. Trajectories of the control input at changed speed. 

Fig.8 shows the trajectories of the control input at changed 
speed. Obviously, the proposed method wastes less energy to 
stabilize and has fewer static jitters. 

 

Fig.9. Sliding motion at changed speed. 

Fig.9 describes the sliding motion of these two methods with 
speed varying from 1000 r/min to 2000 r/min. Similar to the 
conclusions in Fig.6, the proposed SSTSMC has smaller jitters 
when speed keeps unchanging. Meanwhile, when the speed or 
channel changes, the proposed method responses quicker. 

B. Practical Experiments 

In this subsection, the simulations of the DC motor system 

are carried out on the NetController plant. As is shown in 

Fig.10, the plant is made up of a DC motor, a NetController and 

a computer. Firstly, download the model from simulation 

software to the NetController through computer operation. 

Then the plant can start to work. The states, parameters and 

waves can be obtained on the computer, which are sent back 

from NetController through network. 

 

Fig.10. DC motor system with networked controller. 

 
Fig.11. Simulink model of the DC motor system. 

Fig.11 shows the Simulink model of the system. The 

changing reference speed is obtained through different time 

periods, the controller receives reference speed and feedback 

speed as input value so that it can calculate the appropriate 

output value. The value converts from speed value to voltage 

one due to the DC motor plant accepting voltage value as input. 

The voltage value then transmits into Markov jump function, in 

which determines which of the three channels the signal is 

output from, the selection of the channels obeys Markov jump. 

Thus, the chattering problems caused by channel switch can be 

further researched.  

To carry out the experiment, the parameters of the DC motor 

are required firstly, which are obtained through plant 

identification. The parameters and variables are the same with 

those in subsection A. The time of experiment is set as 60s 

(3000 sampling points). The fixed speed tracking results are 

shown as Fig.12-Fig.14.  

Fig.12 describes the output trajectories of the experimental 

plant at the speed of 2000 r/min. The differences between these 

two methods are tiny. However, it’s still clear that the proposed 

methodology performs better than the compared one through 

partial enlarged figure.  
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Fig.12. Output trajectories of the plant at fixed speed. 

Fig.13. Trajectories of the control input of the plant at fixed speed. 

 

Fig.14. Sliding motion at fixed speed. 

Fig.13 shows the trajectories of control input, the voltage of 
which is limited to 0-10V due to the input voltage range of the 
DC motor plant. The proposed method jitters smaller than the 
compared one. While channel changes, the 2-SMC method 
occurs larger jitters. Moreover, the static jitter of 2-SMC is 

more obvious. Fig.14 shows the sliding motion at fixed speed 
of 2000 r/min. It is clearly illustrated that SSTSMC jitters 
smaller when channels maintain unchangeable. 

 

Fig. 15. Output trajectories of the plant at changed speed. 

 

Fig. 16. Trajectories of the control input of the plant at changed speed. 

 

Fig. 17. Sliding motion changed speed. 

Furthermore, an experiment of these two methods with speed 
varying from 1000 r/min to 2000 r/min is carried out. The 
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results of which are shown in Fig.15, Fig.16 and Fig.17. It can 
be seen obviously from the Fig.15 and Fig.16 as above that the 
compared method occurs jitters frequently even when there is 
no RSP. Also, when transmission channel switches or speed 
changes, the compared method jitters larger. The control input 
of 2-SMC is larger than SSTSMC. More importantly, the 
compared 2-SMC algorithm sometimes like 50th second, 
appears drastically chattering while the propose SSTSMC 
method trends to be stable. The control input in Fig.16 can also 
illustrate this problem that the proposed SSTSMC strategy 
consumes less input energy than 2-SMC does to keep the 
system stable. The sliding motion in Fig.17 clarifies the 
problems as well. 

V. CONCLUSION 

In this paper, a DC motor system with switching channels 

and external disturbances is considered. As a result of which, 

the instability and jitters are also introduced. To solve these 

problems, firstly a DC motor model based on markov jump is 

researched. Then, a STO is presented to estimate the states. 

Furthermore, a SSTSMC based on STA is presented. The 

reachability of sliding surface and convergence in finite steps as 

well as the stability of the controller are mathematically 

testified. In the end, the proposed control method is carried out 

on numerical simulations and practical NetController plant. 

Both results SSTSMC method in this paper is more reliable and 

better than conventional 2-SMC strategy. 
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