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a b s t r a c t 

In this paper, the problem of modeling and control for DC-DC converter is investigated. A 

novel switched system model is established and an asynchronous control strategy is de- 

signed. Firstly, the DC-DC converter is modeled by the semi-Markov switched system with 

uncertainty and external disturbance. In which, the change of resistance parameter and 

the jump of input voltage are considered. Additionally, the sojourn-time of the switch is 

considered in the new model, in this way, it can be more accurately to depict the dy- 

namic behavior of the plant. Then, in order to guarantee the stability of the plant, a state 

feedback asynchronous controller is proposed. Furthermore, the stability conditions of the 

closed-loop system with a prescribed H ∞ index factor are given and the controller gains 

are solved. Finally, a numerical simulation and a practical experiment are executed to ver- 

ify the superiority of proposed control strategies. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Recently, since the merit in terms of high output power, good stability, high conversion efficiency and voltage booster,

dc-dc converter has become the preferred power supply system in portable electronic products powered by batteries. The

boost converter is the commonly applied topology of DC-DC converter, in recent years, the modeling and control for DC-DC

converter has become a hot topic. Generally, it is difficult to apply the linear system method to model the converter duo to

the characteristic of strong nonlinear [8] . Conventional, the averaging strategies are utilized to model the DC-DC converter,

for example, state-space averaged model [1] , which ignores the switching details. Hence, this method is simple, but the

accuracy of the linearized model is required to within one fifth of the switching frequency [10] . Different from traditional

averaged model, in this paper, a switched system ideal based on semi-Markov stochastic process is proposed for modeling

DC-DC converter. 

Markov jump systems (MJSs) can effectively characterize the dynamical of physical systems which suffer from abrupt

changes, faults or variations and stochastic switching [6,17,22,26] . Hence, it has been widely employed in many practi-

cal plants, for instance, fault detection and networked control system [9,19] , and so on. It is noticed that the sojourn

time, is defined as the interval of arbitrary two jumps, is a stochastic variable and obeys by the exponential distribution

for continuous-time situation. As a consequence, the transition rate is a constant because of the exponential distribution
∗ Corresponding author. 
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owns the property of memoryless [10] . Therefore, this condition is too restrictive. Usually, in practice, the transition rate

is time-varying. For example, Huang and Shi in [5] presented a bathtub curve which indicates the sojourn-time is time-

varying (including: decrease, constant and increase). Hence, aiming at the sojourn time, a more popular distribution is

brought. 

In order to solve above-mentioned issue, a popular distribution is brought to describe the sojourn time, that is, the

semi-Markov jump systems (S-MJSs) are proposed. Different from MJSs, the sojourn time in S-MJSs is not necessarily obeys

an exponential distribution in continuous-time system. That is, the transition probabilities of the S-MJSs are dynamic and

own the memory property. Hence, it can effectively model the general stochastic jumping systems. It is noted that the MJSs

are the special case of the S-MJSs. In past few decades, S-MJSs have become hot research. In [20] , for the continuous-time

S-MJSs with uncertain, in order to ensure the stochastic stability of the plant, an output-feedback sliding mode controller

is designed. In [12] , considered the discrete-time S-MJSs with limited sojourn time, the stability issues of the plants are

studied, and the approach based on semi-Markov kernel is designed to deal with this problem. In [14] , an approximation

method based on the Kalman-Bucy filter is proposed and applied it to S-MJSs, and the merit of the presented method lies

on that it makes pre-computations possible. In [23] , Zhang et al. developed the stability of discrete-time S-MJSs, the results

indicate that when the distribution of sojourn-time is same in each mode, the different parameters and distributions can

also be coexisted. In [24] , Zhang and Li investigated the stability of hybrid linear parameter-varying plants, where the S-MJSs

are employed to model the switching phenomenon. In [7] , the singular plants with semi-Markov jumping is considered,

the issue of robust sliding mode control (SMC) is studied. A common sliding surface is presented to alleviate the effect of

jumping. In [25] , it is assumed that the sojourn time of S-MJSs suffers from the exponentially modulated periodic probability,

and the authors address the problems of stability of the system. In [15] , Shen et al. discussed the discrete-time S-MJSs with

slow sampling singular perturbations, and a feedback control method based on slow state variable is proposed to achieve

the stability of plant. In [6] , for the nonlinear S-MJSs with delay, a reduced-order adaptive SMC is designed. So far, although

the research on S-MJSs has made some initial achievements, it also needs to further develop its theory and expand its

application field. 

Usually, asynchrony is ubiquitous between the controller mode and system mode duo to the widely existing delays or

packet loss when transmitting data [2,21] . Hence, the survey of asynchronous control has caused the researcher’s great

concern in recent few years. In [3] , for continuous-time nonlinear MJSs, it is assumed that the controller modes are asyn-

chronously with the system modes, and the strictly dissipative control problem is studied. In [16] , aiming at the MJS with

time-delay, in which both the quantizer and controller are asynchronous with the plant, and an asynchronous state feed-

back controller is designed. In [18] , Song et al. investigated asynchronous SMC for a kind of MJSs with stochastic pertur-

bation and time-varying delays, and a hidden Markov model is employed to characterize the controller modes and system

modes. Generally, in asynchronous control, the system modes are asynchronous with the controller modes, and both of

them are contacted through a conditional probability. In this way, it can more accurate describe the actual system. Al-

though the asynchronous control issue has been frequently concerned during the past few years, however, it is worth not-

ing that the asynchronous control strategy for DC-DC converter with uncertainty and external disturbance has not been

investigated. In particular, since the introduction of uncertainty and external disturbance in the switched systems, the

design and synthesis of the asynchronous controller are more complicated and interesting, this motivates the presented

work. 

In this paper, the stability of the DC-DC converter is studied, and an asynchronous control strategy is presented. Specif-

ically, First of all, the S-MJS is employed to depict the DC-DC converter plant, where the vary of resistance parameter and

the jump of input voltage are simultaneous considered as the parameter uncertainty of system and external disturbance,

respectively. Second, a state feedback asynchronous controller is presented in order to ensure the stability of the DC-DC

converter. Thirdly, the stability conditions of the closed-loop system are given in form of the linear matrix inequality and

the controller gains are solved. 

The rest of this paper is organized as follows. Section 2 formulates the control problem and models the DC-DC con-

verter based on semi-Markov. The stability conditions of the plant are presented and the asynchronous controller is de-

signed in Section 3 . Section 4 illustrates the superiority of designed control strategies. In Section 5 , the conclusions are

summarized. 

Notations: “∗”denotes the symmetric term in symmetric entries, and Sym {Z} refers to Z + Z T . 

2. Problem formulation and semi-Markov modeling 

2.1. Problem statement 

Usually, there are two sates for the boost DC-DC converter operated at continuous conduction mode (CCM), that is, (a)

Switch on. (b) Switch off. It is assumed the sampling period is T , then the plant will work under two states in each period,

i.e., t on and t of f = T − t on , where t on and t off are the time of switch on and switch off, respectively. The boost DC-DC converter

is shown in Fig. 1 , in which, Fig. 1 (a) denotes the circuit work under the switch on, and Fig. 1 (b) presents the circuit work

under the switch off. 

The dynamic model of the DC-DC converter under the two work states can be described by 
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Fig. 1. Boost DC-DC converter. (a) Switch on. (b) Switch off. 
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(a) Switch on ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

V in = L d i L 
dt 

+ i L r L 

i C = C d v C 
dt 

v C = −i C (R + r C ) 

v o = v C + r C i C 

(1a)

(b) Switch off⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

V in = L d i L 
dt 

+ i L r L + v o 
i C = C d v C 

dt 

i L = i C + 

v o 
R 

v o = v C + r C i C 

(1b)

where L denotes the inductance, R presents the resistance, V in stands for the external input voltage, C is the capacitance, v o ,

v C , i L , i C , r L and r C are the output voltage, capacitance voltage, inductive current, capacitance current, inductive impedance

and capacitive reactance, respectively. 

Define the state variable, output and input of the plant as: x (t) = [ i L v C ] T , z(t) = v o and u (t) = V in , respectively. Then, the

state-space equation of the DC-DC converter can be characterized as ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{
˙ x (t) = A 1 x (t) + B 1 u (t) 

z(t) = C 1 x (t) 
t ∈ (0 , t on ] {

˙ x (t) = A 2 x (t) + B 2 u (t) 

z(t) = C 2 x (t) 
t ∈ ( t on , T ] 

(2)

where A 1 = ( 
− r L 

L 0 

0 − 1 
C(R + r C ) 

) , A 2 = ( 
−( 

r L 
L + 

r C R 

L (R + r C ) ) − R 
L (R + r C ) 

R 
C(R + r C ) − 1 

C(R + r C ) 
) , B 2 = B 1 = ( 

1 
L 

0 
) , C 1 = ( 0 R 

R + r C ) and C 2 = ( 
r C R 

R + r C 
R 

R + r C ) . 

Remark 1. Generally, for aforementioned state equations in (2) , the averaging model with state-space equation is employed,

it can be characterized by: ˙ x (t) = τ (t )[ A 1 x (t ) + B 1 u (t)] + (1 − τ (t )) ×[ A 2 x (t ) + B 2 u (t)] , where τ ( t ) denotes the switching

function, and if (0 ≤ t ≤ t on ), then τ (t) = 1 ; else τ (t) = 0 . Different from the averaging model, in this paper, the DC-DC

converter is modeled by the semi-Markov stochastic model. 

2.2. Modeling of DC-DC converter based on semi-Markov 

In order to illustrate the semi-Markov model, the following three stochastic processes (SPs) are introduced [4] : 

1) The SP { γ (i ) } ∈ � = { 1 , 2 , ..., S} , where γ ( i ) denotes the state of the plant at the i th jump. 

2) The SP { t(i ) } ∈ R + , where t ( i ) is the time at the i th jump , with t(0) = 0 . 

3) The SP { ϕ(i ) } ∈ R + , where ϕ( i ) represents the sojourn-time of state γ ( i ) between the (i − 1) th jump and i th jump, and

ϕ(i ) = t(i ) − t(i − 1) with ϕ(0) = 0 . 

Remark 2. In DC-DC converter, the switching process of switch operated at CCM is shown in Fig. 2 , where T denotes one

work period, t on and t off represent the on-time and off-time of the switch, respectively. 
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Fig. 2. Switching process in DC-DC converter operated at CCM. 

Fig. 3. The evolution of SPs γ ( i ), t ( i ) and ϕ( i ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, the switching process of switch is modeled by the semi-Markov stochastic process. Meanwhile, consider

the state-space equations in (2) , a stochastic switched system is modeled, as following: {
˙ x (t) = A (γ (t )) x (t ) + B (γ (t )) u (t ) 

z(t) = C(γ (t )) x (t ) 
(3) 

where { γ ( t )} t ≥ 0 is a continuous-time and discrete-state stochastic process. 

Remark 3. The evolution of SP { γ ( t )} t ≥ 0 is shown in Fig. 3 , it takes value in {0, 1}. γ ( t ) is the switching signal and it obeys

the semi-Markov distribution, the probability transitions are defined by 

Pr { γ (t + ϕ) = s | γ (t) = l} = 

{
λls (ϕ ) ϕ + o(ϕ ) , γ (t) switching from l to s 

1 + λll (ϕ) ϕ + o(ϕ) γ (t) keeps at l 
(4) 

where ϕ denotes the sojourn-time, and it is a random variable. 

The evolution of SP { ϕ( t )} t ≥ 0 is shown in Fig. 3 , it takes values in { ϕ(1), ϕ(2), ..., ϕ( i ), ..}. λls ( ϕ) is the transition rate from

state l to state s if l � = s , λll (ϕ) = −∑ N 
s =1 ,s � = l λls (ϕ) , otherwise, o ( ϕ) is the high-order infinity about ϕ, i.e., lim ϕ→ 0 o(ϕ) /ϕ = 0 .

Remark 4. As is shown in Fig. 3 , the sojourn-time ϕ is the work time of the DC-DC converter in each state, and it will be

return to 0 when the switch occurs moment. It is noted that the transition rate λls ( ϕ ) depends only on ϕ . 

Remark 5. Different from the conventional state-space averaging model, in this paper, the sojourn-time ϕ is considered in

the semi-Markov switched system, it will be more accurately to depict the dynamic behavior of the DC-DC converter. 

Remark 6. Additionally, in practice system, on the one hand, as the change of the temperature and the aging of the system

components, the value of resistance R will be changed. As a consequence, it will result in the parameter uncertainty of the

plant, such as the resistance R change into R + �R . On the other hand, the controlled system is inevitably deteriorated by

external disturbance, such as the jump of input voltage. 

As aforementioned analyzed, in this paper, considering the DC-DC converter as the semi-Markov switched system with

the parameter uncertainty and external disturbance. Hence, the state-space equation can be rewritten as following: {
˙ x (t) = [ A (γ (t)) + �A (γ (t)) ] x (t) + B (γ (t )) u (t ) + D (γ (t )) d(t ) 

z(t) = C(γ (t )) x (t ) 
(5) 

where d ( t ) denotes the jump of input voltage as the external disturbance, and d ( t ) ∈ L 2 [0, ∞ ), D ( γ ( t )) is the coefficient

matrix with appropriate dimensions, �A ( γ ( t )) represents the uncertainty of parameter which induced by the vary of the

resistance R , and it satisfied the following relationship: 

�A (γ (t)) = �(γ (t)) ϑ(t)Y(γ (t)) (6) 

where �( γ ( t )) and Y( γ ( t )) are the known matrices, and ϑ( t ) is the unknown time-varying matrix with ϑT ( t ) ϑ( t ) ≤ I is satis-

fied. 
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In what follows, for convenience, denoted γ (t) = l, then the system matrices in (5) can be written as: A ( l ), �A ( l ), B ( l ),

C ( l ) and D ( l ). 

3. Design of controller and stability analysis 

In this subsection, firstly, the asynchronous controller will be designed. Then, the stability of the closed-loop plant will

be analyzed. 

3.1. Design of controller 

In this paper, the following state feedback asynchronous controller will be designed: 

u (t) = K(α(t )) x (t ) (7)

where K ( α( t )) denotes the controller gain to be designed, { α( t )} t ≥ 0 is a stochastic process with α(t) ∈ 
 = { 1 , 2 , ..., F } , it is
assumed that the following conditional probability is satisfied 

Pr { α(t) = q | γ (t) = l} = ρlq (8)

with 

∑ F 
q =1 ρlq = 1 . 

Substitute (7) into (8) , it can be obtained the following closed-loop system: 

˙ x (t) = 

[
Ā (l) + B (l) K(q ) 

]
x (t) + D (l) d(t) (9)

where Ā (l) = A (l) + �A (l) . 

In order to discuss the stability of the stochastic closed-loop plant (9) , the following definition will be given. 

Definition 1. The closed-loop system (9) is stochastically stable with a H ∞ norm bound ξ > 0, if 

1) The closed-loop system (9) with d(t) = 0 is stochastically stable, i.e., for any initial condition x (0) = x 0 , γ (0) = γ0 and

t(0) = t 0 , there exists a constant �( x 0 , γ 0 , t 0 ) > 0 such that 

E 

[ ∫ ∞ 

0 

|| x (t ) | | 2 dt | x 0 , γ0 , t 0 

] 
≤ �( x 0 , γ0 , t 0 ) (10)

2) Under the zero initial condition, that is, x (0) ≡ 0, for any d ( t ) ∈ L 2 [0, ∞ ), the following condition is satisfied: ∫ ∞ 

0 

z T (t) z(t) dt ≤ ξ 2 

∫ ∞ 

0 

d T (t) d(t) dt (11)

3.2. Stability analysis 

For the sake of analyzing the stability analysis of the closed-loop plant, the following results are given. 

Theorem 1. The closed-loop system ( 9 ) with d(t) = 0 is stochastically stable, if there exists the symmetric matrices Q ( l ) > 0 ,

Q ( s ) > 0 , l, s ∈ � , and matrices K ( q ) , q ∈ 
 , such that 

N ∑ 

s =1 

λls (ϕ) Q(s ) + 

F ∑ 

q =1 

ρlq Sym { ̃  A 

T (l) Q(l) } < 0 (12)

where ˜ A (l) = Ā (l) + B (l) K(q ) . 

Proof. Constructing the following switched Lyapunov function for the closed-loop plant (9) 

V (x (t) , γ (t) , t) = x T (t) Q(γ (t)) x (t) (13)

Denote the infinitesimal operator [21] : 

˙ V (x (t) , γ (t) , t) = lim 

η→ 0 

E [ V (x (t + η) , γ (t + η) , t + η) | x (t) , γ (t) , t ] − V (x (t) , γ (t) , t) 

η
(14)

where η is a small number. 

According to (13) and (14) , it can be obtained that 

˙ V (x (t) , γ (t) , t) = lim 

η→ 0 

1 

η

[ 

E 

{ 

N ∑ 

s =1 ,s � = l 
Pr { γ (t + η) = s | γ (t) = l} x T (t + η) Q(s ) x (t + η) 

+ Pr { γ (t + η) = l| γ (t) = l } x T (t + η) Q(l ) x (t + η) 

} 

− x T (t) Q(l) x (t) 

] 

(15)
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Define � l ( t ) as the distribution function of the sojourn-time ϕ at state l . Then the (15) can be rewritten as 

˙ V (x (t) , γ (t) , t) = lim 

η→ 0 

1 

η
E 

[ 

N ∑ 

s =1 ,s � = l 
πls 

[ �l (ϕ + η) − �l (ϕ) ] 

1 − �l (ϕ) 
x T (t + η) Q(s ) x (t + η) 

+ 

1 − �l (ϕ + η) 

1 − �l (ϕ) 
x T (t + η) Q(l) x (t + η) − x T (t) Q(l) x (t) 

] 

(16) 

where π ls is the probability intensity of the plant switching from state l to state s . 

It is note that the first-order Taylor expansion of x (t + η) in (16) is 

x (t + η) = x (t) + η ˙ x (t) + o(η) (17) 

where o ( η) is the high-order infinity about η, i.e., lim ϕ→ 0 o(η) /η = 0 . 

Substitute (17) into (16) , it can be obtained that 

˙ V (x (t) , γ (t) , t) = lim 

η→ 0 

1 

η
E 

[ 

N ∑ 

s =1 ,s � = l 
πls 

�l (ϕ + η) − �l (ϕ) 

1 − �l (ϕ) 
{ x T (t) Q(s ) x (t) + 2 ηx T (t) Q(s ) ̇ x (t) + η2 ˙ x T (t) Q(s ) ̇ x (t) } 

+ 

1 − �l (ϕ + η) 

1 − �l (ϕ) 
{ x T (t) Q(l) x (t) + 2 ηx T (t) Q(l) ̇ x (t) + η2 ˙ x T (t) Q(l) ̇ x (t) } − x T (t) Q(l) x (t) 

] 

(18) 

Duo to �l (ϕ + η) − �l (ϕ) → 0 (when η → 0) and lim 

η→ 0 

1 −�l (ϕ+ η) 

1 −�l (ϕ) 
= 1 . Hence the (18) can be rewritten as 

˙ V (x (t) , γ (t) , t) = E 

[ 

N ∑ 

s =1 ,s � = l 
πls lim 

η→ 0 

1 

η

[ �l (ϕ + η) − �l (ϕ) ] 

1 − �l (ϕ) 
x T (t) Q(s ) x (t) 

− lim 

η→ 0 

1 

η

�l (ϕ + η) − �l (ϕ) 

1 − �l (ϕ) 
x T (t) Q(l) x (t) + 2 x T (t) Q(l) ̇ x (t) 

]
(19) 

Define λl ( ϕ) and f l ( ϕ) as the transition rate and the probability density function of the stochastic sojourn-time ϕ in state

l , respectively. Therefore 

lim 

η→ 0 

1 

η

�l (ϕ + η) − �l (ϕ) 

1 − �l (ϕ) 
= 

1 

1 − �l (ϕ) 
lim 

η→ 0 

�l (ϕ + η) − �l (ϕ) 

η

= 

f l (ϕ) 

1 − �l (ϕ) 
= λl (t) (20) 

Considering the Eq. (20) , it can be deduced that 

˙ V (x (t) , γ (t) , t) = E 

[ 

N ∑ 

s =1 ,s � = l 
πls λl (ϕ) x T (t) Q(s ) x (t) −λl (t) x T (t) Q(l) x (t) + 2 x T (t) Q(l) ̇ x (t) 

] 

(21) 

Let λls (ϕ) = πls λl (ϕ) , l � = s and λll (ϕ) = −∑ N 
s =1 ,s � = l λls (ϕ) , then the (21) becomes 

˙ V (x (t) , γ (t) , t) = E 

[ 

x T (t) 

( 

N ∑ 

s =1 

λls (ϕ) Q(s ) 

) 

x (t) + 2 x T (t) Q(l) ̇ x (t) 

] 

(22) 

Substitute (9) into (22) yields, 

˙ V (x (t) , γ (t) , t) = x T (t) 

( 

N ∑ 

s =1 

λls (ϕ) Q(s ) + 

F ∑ 

q =1 

ρlq Sym { ̃  A 

T (l) Q(l) } 
) 

x (t) 

= x T (t)�(l, s, t) x (t) (23) 

where �(l, s, t) = 

∑ N 
s =1 λls (ϕ) Q(s ) + 

∑ F 
q =1 ρlq Sym { ̃  A 

T (l ) Q(l ) } . 
According to (12) , it can be deduced that 

�(l, s, t) < I max 
l∈� ,t 

{ λmax (�(l, s, t)) } < 0 (24) 
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Hence, 

E [ V (x (t) , γ (t) , t) ] − V ( x 0 , γ0 , t 0 ) 

= E 

[∫ t 

0 

˙ V (x (κ) , γ (κ) , κ) dκ| x 0 , γ0 , t 0 

]

= E 

[∫ t 

0 

x T (κ)�(l, s, κ) x (κ) dκ| x 0 , γ0 , t 0 

]

≤ max 
l∈� ,t 

{ λmax (�(l, s, t)) } E 
[∫ t 

0 

|| x (κ) | | 2 dκ| x 0 , γ0 , t 0 

]
< 0 

(25)

The (25) indicates that 

V ( x 0 , γ0 , t 0 ) ≥ − max 
l∈� ,t 

{ λmax (�(l, s, t)) } E 
[∫ t 

0 

|| x (κ) | | 2 dκ| x 0 , γ0 , t 0 

]
> 0 (26)

Furthermore, 

− V ( x 0 , γ0 , t 0 ) 

max 
l∈� ,t 

{ λmax (�(l, s, t)) } ≥ E 

[∫ t 

0 

|| x (κ) | | 2 dκ| x 0 , γ0 , t 0 

]
> 0 

When t → ∞ , it can be obtained that 

E 

[∫ t 

0 

|| x (κ) | | 2 dκ| x 0 , γ0 , t 0 

]
≤ �( x 0 , γ0 , t 0 ) (27)

where �( x 0 , γ0 , t 0 ) = − V ( x 0 , γ0 , t 0 ) 
max 
l∈� ,t 

{ λmax (�(l,s,t)) } . 

According to Definition 1 , the (27) indicates that the closed-loop system (9) with d(t) = 0 is stochastically stable. This

completes the proof. �
Furthermore, we will investigate the H ∞ damping performance for the disturbance d ( t ) � = 0. Firstly, in order to deal with

the uncertainty, the following lemma is given. 

Lemma 1 [13] : If ϑT ( t ) ϑ( t ) ≤ I , then there exists constant matrices ℵ and 
 , and the scalar ɛ > 0 such that 


 ϑ(t) ℵ + ℵ 

T ϑ 

T (t) 
 

T ≤ ε
 
 

T + ε −1 ℵ 

T ℵ (28)

Theorem 2. Given a scalar ξ > 0 , the closed-loop plant ( 9 ) is stochastically stable with a H ∞ damping index ξ , if there exists

the symmetric matrices Q ( l ) > 0 , Q ( s ) > 0 , l, s ∈ � , matrices K ( q ) , q ∈ 
 , and a set of scalars ɛ l > 0 , l ∈ � , such that ⎛ 

⎜ ⎜ ⎝ 

�11 (l, s, t) Q(l) D (l) C T (l) Y 

T (l) 

∗ −ξ 2 I 0 0 

∗ ∗ −I 0 

∗ ∗ ∗ −ε −1 
l 

I 

⎞ 

⎟ ⎟ ⎠ 

< 0 (29)

where 

�11 (l, s, t) = 

N ∑ 

s =1 

λls (ϕ) Q(s ) + Sym { A 

T (l ) Q(l ) } + 

F ∑ 

q =1 

ρlq Sym { (B (l) K(q )) 
T 

Q(l) } + ε l Q(l )�(l ) �T (l ) Q(l ) . 

Proof. Firstly, define 

J = 

∫ ∞ 

0 

{ z T (t) z(t) − ξ 2 d T (t) d(t) } dt (30)

Under the zero initial condition, the following condition is satisfied for any nonzero d ( t ) ∈ L 2 [0, ∞ ) 

J ≤
∫ ∞ 

0 

{ ̇ V (x (t) , γ (t) , t) + z T (t) z(t) − ξ 2 d T (t) d(t) } dt (31)

Let x̄ (t) = [ x (t ) d(t )] T , according to Theorem 1 , it can be derived that 

J ≤
∫ ∞ 

0 

{ 

x T (t) 

( 

N ∑ 

s =1 

λls (ϕ) Q(s ) + 

F ∑ 

q =1 

ρlq Sym { ̃  A 

T (l) Q(l) } 
) 

x (t) 

+ 2 x T (t) Q(l) D (l) d(t) + x T (t) C T (l) C(l) x (t) − ξ 2 d T (t) d(t) 

} 

dt 
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= 

∫ ∞ 

0 

x̄ T (t) 

(
� ′ Q(l) D (l) 

D 

T (l) Q(l) −ξ 2 I 

)
x̄ (t) dt (32) 

where � ′ = 

∑ N 
s =1 λls (ϕ) Q(s ) + 

∑ F 
q =1 ρlq Sym { ̃  A 

T (l) Q(l) } + C T (l) C(l) . 

Combining with the (6) yields 

F ∑ 

q =1 

ρlq Sym { ̃  A 

T (l) Q(l) } = 

F ∑ 

q =1 

ρlq Sym { (B (l) K(q )) 
T 

Q(l) } + Sym { A 

T (l) Q(l) } 

+ [ Q(l)�(l) ϑ(t)Y(l) ] 
T + Q(l)�(l) ϑ(t)Y(l) (33) 

Using the Lemma 1, the (33) becomes 

F ∑ 

q =1 

ρlq Sym { ̃  A 

T (l) Q(l) } ≤
F ∑ 

q =1 

ρlq Sym { (B (l) K(q )) 
T 

Q(l) } + Sym { A 

T (l) Q(l) } 

+ ε l Q(l)�(l) �T (l) Q(l) + ε −1 
l 

Y 

T (l)Y(l) (34) 

Combining with (32) , (33) and (34) , it can be derived that 

J ≤
∫ ∞ 

0 

x̄ T (t) ̃  � x̄ (t) dt (35) 

where 

˜ � = 

(
˜ � ′ + 

˜ � ′′ + 

˜ � ′′′ Q(l) D (l) 

D 

T (l) Q(l) −ξ 2 I 

)
, 

˜ � ′ = 

N ∑ 

s =1 

λls (t) Q(s ) + C T (l) C(l) , 

˜ � ′′ = 

F ∑ 

q =1 

ρlq Sym { (B (l) K(q )) 
T 

Q(l) } + Sym { A 

T (l) Q(l) } , 

˜ � ′′′ = ε l Q(l)�(l) �T (l) Q(l) + ε −1 
l 

Y 

T (l)Y(l) . 

Furthermore, using the Shur complement, the matrix ˜ � in (35) can be easily transformed into the matrix in (29) . Hence,

the inequality in (29) indicates that J ≤ ∫ ∞ 

0 x̄ T (t) ̃  � x̄ (t) dt < 0 , that is, 
∫ ∞ 

0 z T (t) z(t) dt ≤ ξ 2 
∫ ∞ 

0 d T (t) d(t) dt for any nonzero

d ( t ) ∈ L 2 [0, ∞ ). According to the Definition 1 , the closed-loop system (9) is stochastically stable with a H ∞ damping index

ξ . This finishes the proof. �
Furthermore, for the sake of solving the controller gains, the following stability condition based on linear matrix inequal-

ity is given. 

Theorem 3. For given scalars ξ > 0 and ɛ l > 0 , l ∈ � , the closed-loop plant ( 9 ) is stochastically stable with a H ∞ damping index

ξ , if there exists the symmetric and positive definite matrices Q ( l ) , �( l ) , l ∈ � , and matrices M ( q ) , q ∈ 
 such that the following

inequality is satisfied ⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

˜ �11 D (l) �(l) C T (l) �(l) Y 

T (l) �(l) ˜ �(l) 

∗ −ξ 2 I 0 0 0 0 

∗ ∗ −I 0 0 0 

∗ ∗ ∗ −ε −1 
l 

I 0 0 

∗ ∗ ∗ ∗ −ε l I 0 

∗ ∗ ∗ ∗ ∗ − ˜ Q 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

< 0 (36) 

where ˜ �11 = Sym { �(l) A 

T (l) } + 

∑ F 
q =1 ρlq Sym { M 

T (q ) B T (l) } + ̄λll �(l) , ˜ �(l) = [ 

√ 

λ̄l, 1 · · ·
√ 

λ̄l ,l −1 

√ 

λ̄l ,l +1 · · ·
√ 

λ̄l,N ]�(l) , ˜ Q =
diag{ �(1) , . . . , �(l − 1) , �(l + 1) , . . . , �(N) } and λ̄ls = E{ λls (ϕ) } = 

∫ ∞ 

0 λls (ϕ ) f l (ϕ ) d ϕ. 

The controller gain can be solved by 

K(q ) = M(q ) �−1 (l) (37) 
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Proof. Firstly, define �(l) = Q 

−1 (l) and M(q ) = K(q )�(l) , then pre- and postmultiplying inequality (29) by diag { �( l ), I, I, I },

it can be derived that ⎛ 

⎜ ⎜ ⎝ 

�̄11 (l, s, t) D (l) �(l) C T (l) �(l) Y 

T (l) 

∗ −ξ 2 I 0 0 

∗ ∗ −I 0 

∗ ∗ ∗ −ε −1 
l 

I 

⎞ 

⎟ ⎟ ⎠ 

< 0 (38)

where 

�̄11 (l, s, t) = λ̄ll �(l) + �(l) 

( 

N ∑ 

s =1 ,s � = l 
λ̄ls Q(s ) 

) 

�(l) + Sym 

{
�(l ) A 

T (l ) 
}

+ 

F ∑ 

q =1 

ρlq Sym 

{
M 

T (q ) B 

T (l) 
}

+ ε l �(l ) �T (l ) . 

Using the Shur complement and some changes of variables, the matrix in (38) can be transformed into the matrix in

(36) . This completes the proof. �

4. Simulations and experiments 

4.1. Numerical simulations 

In this subsection, in order to prove the superiority of the designed method, a boost DC-DC converter is considered,

according to [11] , the parameters of the plant are: r C = 0 . 1�, r L = 0 . 1�, L = 95 × 10 −6 H, V o = 80 V , C = 300 × 10 −6 F , P o =
500 W and R = V 2 o / P o = 12 . 8�. Substituting them into states space equations (2) yields 

A 1 = 

(−1052 . 6316 0 

0 −258 . 3979 

)
, B 1 = 

(
10526 . 3158 

0 

)
, C 1 = 

(
0 

0 . 9922 

)T 

A 2 = 

(−2097 . 0525 −104 4 4 . 2105 

3307 . 4935 −258 . 3979 

)
, B 2 = 

(
10526 . 3158 

0 

)
, C 2 = 

(
0 . 0992 

0 . 9922 

)T 

, 

The uncertainty term �A (γ (t)) = �(γ (t)) ϑ(t)Y(γ (t)) are set as: 

�1 = �2 = 

(
0 . 1 0 . 1 

)T 
, Y 1 = Y 2 = 

[
0 . 1 0 . 1 

]
and ϑ 1 (t) = ϑ 2 (t) = 2 . 5 sin (t) 

The disturbance term D ( γ ( t )) d ( t ) are set as: D 1 = D 2 = ( 0 . 04 0 . 01 ) T and d(t) = 1 . 5 cos (t) . It is noticed that there

are only two operation states in each sampling period (that is switch on and switch off). Hence, the transition intensity

satisfied: πls = 1 for l � = s and πll = 0 . Assuming that the sojourn time of the switch obeys the Weibull distribution at each

state. The transition rate function from mode l is: λl (ϕ) = (β/ αβ ) ϕ 

β−1 where β shows the shape parameter of the Weibull

distribution and α is the scale parameter. In this paper, for l = 1 , let α = 1 and β = 2 , when l = 2 , let α = 1 and β= 3 . Then

the transition rate matrix can be obtained: 

[ λls (ϕ)] = 

[−2 ϕ 2 ϕ 

3 ϕ 

2 −3 ϕ 

2 

]
. 

Furthermore, the expectation value can derived by E{ λls (ϕ) } = 

∫ ∞ 

0 λls (ϕ ) f l (ϕ ) d ϕ, that is 

λ̄ls = E{ [ λls (ϕ)] } = 

[−1 . 7725 1 . 7725 

2 . 7082 −2 . 7082 

]
. 

The parameters of the matrix [ ρ lq ] in asynchronous controller is set to be 

[ ρlq ] = 

[
0 . 3 0 . 7 

0 . 8 0 . 2 

]
. 

The H ∞ damping index ξ= 16 , the parameters ε 1 = ε 2 = 0 . 01 . The simulations time is set to be 10 s, and the sampling

period is 0.05 s. The initial condition is set: x (0) = [0 . 60 . 8] T , γ (1) = 1 and α(1) = 2 . According to Theorem 3 , the controller

gains can be obtained as follows: 

K 11 = [0 . 0558 − 0 . 0 0 03] , K 12 = [0 . 1186 − 0 . 0 0 03] , K 21 = [0 . 1997 − 2 . 6722] and K 22 = [0 . 0502 − 0 . 6681] 

The simulation results are shown in Figs. 4–6 . Among which, Fig. 4 depicts the switching process of the variable γ ( t )

and α( t ), where the sojourn-times ϕ( l ) of switch on and switch off are stochastic, and the lower and upper bound of the

sojourn-time are 1.0 s and 2.5 s, respectively. When γ (t) = 1 , the probabilities are 0.3 and 0.7 for α(t) = 1 and α(t) = 2 .

Otherwise, the probabilities are 0.8 and 0.2 for α(t) = 1 and α(t) = 2 , respectively. Fig. 5 gives the trajectories of the states

x 1 and x 2 under designed asynchronous control strategy, it can be seen that both states can converge to the equilibrium

point at about 1.0 s. Fig. 6 presents the trajectories of the input under asynchronous control strategy. 



134 M. Li, Y. Chen and L. Xu et al. / Information Sciences 532 (2020) 125–138 

Fig. 4. Switching process of the variable γ ( t ) and α( t ). 

Fig. 5. Trajectories of the states under asynchronous control. 

Fig. 6. Trajectories of the input under asynchronous control. 
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Fig. 7. Trajectories of the states under feedback control. 

Fig. 8. Trajectories of the input under feedback control. 

 

 

 

 

 

 

 

 

 

 

Furthermore, in order to illustrate the effectiveness of designed method, the traditional feedback control approach is

carried out as comparison, the parameters and initial conditions are set as same as above. The simulation results are shown

in Figs. 7 and 8 . The trajectories of the states under traditional feedback control are given in Fig. 7 . It takes about 3.0 s

for the states converge to the equilibrium point. Fig. 8 plots the trajectories of the input under traditional feedback control.

Additionally, comparing the designed asynchronous control strategy with the traditional feedback control approach, we can

conclude that the convergence of proposed asynchronous control is faster than the traditional feedback control. 

4.2. Practical experiment 

In this subsection, the simulations of boost DC-DC converter are carried out on Dspace. As is shown in Fig. 9 , the com-

puter host and Dspace are linked by network. Firstly, the Dspace executes the compute, and then return the results to the

control desk. And also, the operation results can be display by scope. 

Remark 7. In the boost DC-DC converter, the switch is stochastic switching, and the times of switch on t on and switch offt off

are time-varying, that is the state transition rate is time-varying. Hence, it is very reasonable to employ the semi-Markov

stochastic process to model the converter. Additionally, the asynchronous phenomenon is existed between controller nodes

and the converter duo to some components fault, communication delay, and disturbance, and so on. Therefore, in this paper,

the asynchronous strategy is designed to control converter. 
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Fig. 9. DC-DC converter simulation based on Dspace. 

Fig. 10. Trajectories of the states under asynchronous control. 

 

 

 

 

In the simulations, the parameters of the DC-DC converter are set as same as Part A. The initial condition is set: x (0) =
[ 0 . 81 . 2 ] T , γ (1) = 1 , and α(1) = 1 . The uncertainty term and the disturbance term are set as: ϑ 1 (t) = ϑ 2 (t) = 5 . 5 cos (4 t) ×
sin (2 t) and d(t) = 6 . 5[ cos (4 t) + sin (6 t) ] , respectively. Other parameters are set as same as above. 

The simulations are started at 0.5 s. The simulation results are shown as follows. Fig. 10 presents the trajectories of

the states designed asynchronous control strategy. Seen from the results, it can be seen that both states are unstable at

begin of the system starts running. And also it takes about 2.5 s for the states to reach the equilibrium point. Fig. 11 gives
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Fig. 11. Trajectories of the input under asynchronous control. 

Fig. 12. Switching process of the variables γ ( t ) and α( t ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the trajectories of the control input. It can be seen that the control input occurs violent shaking after the system starts

running, and there still exists some minor oscillation even the control input reaches the equilibrium point. Fig. 12 shows

the switching process of the variables γ ( t ) and α( t ). It can be seen that the switching signals begin working at 0.5 s duo

to the system starts running at that time. In Fig. 12 , the variable γ ( t ) denotes the sojourn-time which is random, with

the lower and upper bound are 0.325 s and 1.25 s, respectively. The variable α( t ) is the index signal of the asynchronous

controller. Both variables γ ( t ) and α( t ) are connected by the conditional probability. 

5. Conclusion 

In this paper, the problem of modeling and control of boost DC-DC converter is studied. In which, a semi-Markov

switched model is established and an asynchronous control strategy is proposed for the DC-DC converter. Firstly, consid-

ering the change of resistance parameter and the jump of input voltage in the DC-DC converter, an S-MJS with uncertainty

and external disturbance is modeled. Additionally, in order to accurately characterize the dynamic behavior of the con-

verter, the sojourn-time of the switch is considered in the model. Secondly, a state feedback asynchronous strategy is de-

signed for achieving the stability of the system. Thirdly, the stability conditions of the closed-loop plant with a prescribed

H ∞ 

index factor are given and the controller gains are solved. Finally, in order to prove the effectiveness of presented

control strategies, a numerical simulation and a practical experiment are executed. In the further work, the DC-DC con-

verter jumping systems with the general constrained switching signals, such as dwell time and average dwell time will be

studied. 
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